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METHOD 

in [l and 21 or discus- 
sed in [3] shows clearly that the Enskog series for the distribution function satisfying the 

Boltzmann equation is asymptotic. This representation of the distribution function can 

also be deduced from the integral equation obtained by integrating the left and right- 
hand sides of the Boltzmann equation along the trajectory of the molecule (see e. g. [2]). 
Nevertheless, the asymptotic character of the Enskog expansion becomes particularly clear, 

if the integral fbbm of the kinetic equation containing the probabilities of free paths of 
the molecules is used, and the Laplace’s method applied in the asymptotic estimate of 
the integral. 

We also see that the region of applicability of the resulting asymptotic representation 
is substantially curtailed (on the side of the high order of rarefaction) by discarding the 
corresponding exponential terms characterizing in particular the influence of the initial 

and boundary conditions. 

1, We shall write the kinetic equation in the form ~ 

f (1, ti, Ii) = f (to. zoie EJ exp 

.+ if+ (T, ri - $ (t -T), 

I* 

N(fs yi. Ci)= \ f(fv yiv FliOagdfl. I+ = \ j%'gdcdgl 
. . 

f-IS-fll. N, = N (T, zi - Ei (I - 1). Sib, f’z J-IN 

Here S denotes the collision frequency, J+ is the integral of the reverse collisions, u 
is the collision cross section and r - rois the time of the collisionless passage of a mole- 

cule with velocity si from some point rot to the point Xi = I,,~ + ki (t - T) under con- 
sideration. 

Equations (1.1) show that the velocity distribution of the molecules at any instant I 
and at an arbitrary point I~, is related to the values of the distribution function at any 
points of the region situated arbitrarily far from the point TV, and at any instant of time 
preceding z . Nevertheless, the degree of mutual dependence of two points zi and zOi and 
of two instants 1 and r,, ,decreases exponentially with increasing both the distance between 
these points and the time interval : - r,,,and the rate of decrease is directly related to 
the collision frequency. Our aim will be to find an explicit expression for the distribution 
function satisfying the kinetic equation, under the condition that the velocity distribution 
of the molecules at the point 1, ri is defined, basically, by the behavior off in sufficiently 
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near vicinity of this point. 

We shall begin by analysing the asymptotic behavior of the right side of (1.1) noting 
that its second term is, in fact, a Laplace integral [4]. To make the resemblance com- 
plete, one could introduce a large value parameter in its exponential index by incorpo- 

rating the necessary scale factors. This, however, is not really necessary, since the vali- 
dity of the asymptotic estimate depends only on the relative behavior of the integrand 
functions, and our concern is to ensure that the change in the value of /- is sufficiently 
weak and does not appreciably influence the behavior of the exponential term. 

We shall consider the time 1 and the points li both sufficiently removed from the ini- 
tial time and the boundary, respectively, i.e. we assume that the influence of the initial 
and boundary conditions on the state of gas at the instant t and at the point xi , is vanish- 

ingly small. We shall call such points Z,ii”ternal (not lying on the boundary) and t, > 0. 

The value of r, in (1.1) which we shall choose for the considered 1. zI and &,, may, in 
general, be arbitrary (for the steady state problems we choose I, according to the given 

point Zoi). 
When lo is close to t and & is fixed, then the exponential factor appearing in the first 

term of (1.1) may have the value close to unity, and its value will decrease with lncreas- 

ing to. Let us choose to such, that the first term in (1.1) can be neglected for the accu- 
racy required, i. e. let us limit ourselves to the effective time interval equal to t - b 
and to the corresponding effective ray length of Et given by the relation f (I, Zip Ei). 

If function I+ undergoes little change on the selected interval t - f, on which the 

exponential factor of the integrand function changes its value from unity to practically 
zero, then using the theoretical basis of the Laplace’s method we can infer that the value 

of the integral is governed, essentially, by the behavior of 1’ near T = t. If we assume 
that the function f‘ is practically constant on the interval I - tOI then the integral in 

(1.1) will become computable and Eq.( 1.1) will become, with the accuracy of up to 
the neglected terms, 

f (I, Zip ii) = 1’ tfs ‘1, ii) (1.2) 
or, utilizing the definition of f’ we can obtain 

s ' (1'h'--lh)~W& = 0 (1.3) 

Assuming that the above arguments hold for all velocities &, i. e. if for all 5, such 
effective time interval t - h and such domain of spatial variables (domain of depend- 

ence of f ) can be chosen that I* is practically constant within it, then (1.3) will hold 
for all &I and this will in turn imply that the molecular velocity distribution should be 

locally Maxwellian within this region 
j=j’“‘= n c* = cr* $ c*s + c,* 

(zsR7‘)“~ 
exp-‘S 

ZH1” Q=Q--U, (1.4) 

Here n, T and ai are the local density, temperature and the gas velocity, and they 
are no longer defined by the kinetic equation, but by the equations of conservation of 

the flow field. 
In this manner we arrive at the purely hydrodynamic description of the motion of gas. 

Kinetic equations show that the motion of gas can be regarded as a motion of an aggre- 
gate of fluid particles. Each fluid particle (infinitessimally small ftom the macroscopic 
point of view, but of the linear dimension larger than the maximum free path of a mole- 
cule) is in a local state of thermodynamic equilibrium and the main contribution to this 
equilibrium state comes from the collisions within the fluid particle, in other words, the 
fluid particle in question can be regarded as a closed thermodynamic system. Its density, 
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temperature and velocity are governed by its surroundings, i.e. by the complete field of 

flow, and should be obtained from the equations of conservation. 
We can easily see that in this. or any other case, the motion of gas could be obtained 

by direct integration of the Boltzmann equation. However. the connection between the 

elementary volumes dq and the states of the gas at different instants of time, must be 
maintained during the process and this ‘in turn demands that the dimensions of dri and 
dl employed in numerical integration should be much smaller than those obtained from 

the macroscopic considerations. Transition from the Boltzmann equation to the equations 

of conservation implies a change to a higher scale. 

2. Let us now suppose that /* varies little within its region of functional dependence. 

Let us pass in the integral (1.1) to a new variable of integration 
t t 

a=\ N,dr, a,, = \ N,dr (2.1) 
. 
5 i. 

Expanding f+ near the point L, rf into a Taylor series containing only the terms linear 

in a, inserting the resulting expression off into (1.1) and integrating, we obtain, to with- 

in the required accuracy, 

i 
~ i <i ‘~ 

)I 
(2.2) 

f t. I( 

Let us find the correction to to the principal term / “) of the asymptotic expansion of 

f . Since we can assume that i = !+ = /(o) when $1 a$+ + EizW& 14 f+ 

I 

we can be justified in saying that the function f can be represented by 

I = P(i + 0) (2.3) 

where Q denotes a small relative deviation from the locally Maxwellian distribution. 

Inserdng (2.3) into (2.2) and utilizing the definition of f’ we obtain, on linearizing, 

(2.4) 

In accordance with the required degree of accuracy we have replaced f+ under the 

differentiation signs by 1 e(0) The accuracy of (2.4) compares with mat of the intermedi- 
ate equation which appears, when the Enskog method is applied to the Boltzmann equa- 

tion. Assuming further that, just as in the Enskog method, first five moments of the dis- 
tribution function are given by the first term of (2.3), we can write a+“)/ C% in terms of 

the derivatives Bn / at, au, / at and 6T / dt, and the latter in terms of the spatial deriva- 
tives of the same quantities. This follows from the equations of conservation containing 
only the moments corresponding to the zero% approximation. Thus we obtain the fol- 
lowing first approximation to the Enskog equation defining cp 

c (0’ + 9: - p - cp‘) f(“)/+O)&Q = D(‘) 
. (2.5) 

where D(r) is used in the sense of the well known monograph of Chapman and Cowling 

Cll. 
We note that in (2.4), individual derivatives corresponding to the liquid particle should 

have been used instea,d of the partial derivatives with respect to time, i. e. afi”) / at etc. 
Enskog’s method exaggerates artificially the importance of the partial derivatives with 
respect to time. Indeed, in the case of steady state flows these partial derivatives are 
all equal to zero, and the results of the method can be successfully applied to all steady 
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state problems, provided that relevant conditions are met. Individual derivatives are the 
only ones that are important and all arguments concerning the method of separation of 
the derivatives in the Enskog’s method should be taken as referring to the individual de- 
rivatives. This is obvious from the physical point of view, since the Enskog method leads 
to the hydrodynamic representation of the motion of gas. 

Of course,instead of confining ourselves to the first Enskog approximation for 1, we could 

attempt to obtain a more accurate asymptotic representation by taking into account the 
second derivatives of f+ in the Taylor expansion. This would have yielded the Burnett 
approximation (it would not take us into the higher rarefaction region, since the effective 
domain of the functional dependence would not be altered). The question whether this 

method would yield better accuracy in the general case is open to doubt, since this would 
demand the smoothness of I+ and consequently of f beyond that given by the Boltzmann 

equation. 
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We consider the application of the least squares method to models which are nonlinear 
with respect to the parameters and for which a linearizing transformation Y exists (such 

problems e. g. arise in the experimental determination of the parameters of the exponen- 
tial criteria1 equations). We prove that the values of the parameters obtained after the 
transformation deviate from the required values, and we show the logarithmic transforma- 

tion as an example illustrating the method used to obtain formulas yielding the estimates 
of these errors. 

Iteration method which we propose, retains the advantages of the computations based 
on the linear model, but removes the error mentioned above, and we give the sufficient 
conditions for its convergence. To illustrate the method, we use empirical data on the 
mass transfer at the wall in a turbulent fluid flow at large Schmidt numbers. 

Let us consider a random variable function of the form y (x) = f (x) + E (x) (without 
loss of generality, we can assume that this function is defined for a<x < b and is equal 
to zero outside this interval), where f (x) = <Y (Y)) and E (n) is a stationary random func- 
tion such, that <$ (s)) = 0. Usually, the problem of estimating the regression curve f (x) 


